
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 8, 101 1-1027 (1988) 

THE FREE SURFACE FLOW OF NEWTONIAN AND NON- 
NEWTONIAN FLUIDS TRAPPED BY SURFACE TENSION 

D. M. TIDD 
Naval Architects and Future Projects Department, Vickers Shipbuilding and Engineering Ltd., Barrow-in-Furness, 

Cumbria LA14 I A F ,  U.K.  

R. W. THATCHER AND A. KAYE 
Department of Mathematics, University of Manchester Institute of Science and Technology, P.O. Box 88, 

Manchester Mi50 IQD. U.K.  

SUMMARY 
In this paper the position of the free surface of a swirling fluid held in by surface tension is calculated by the 
finite element method. A new locally mass-conserving quadratic velocity, linear pressure triangular element 
is used to overcome non-physical solutions produced by the well known Taylor-Hood element. 
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1. INTRODUCTION 

This paper is concerned with finding the shape of a free surface and calculating the flow pattern of 
Newtonian and non-Newtonian fluids. We first consider the case of fluid confined by surface 
tension between two finite parallel plates rotating with different angular velocities. Secondly we 
consider the case where the top plate is replaced by a cone whose vertex touches the centre of the 
bottom plate. 

For in finite rotating parallel plates, where there are no complications caused by the free surface, 
an ‘exact’ solution exists for a Newtonian fluid. A similarity transformation is applied to the 
Navier-Stokes equations, reducing them to a set of ordinary differential equations. There are 
several publications giving solutions for increasing Reynolds number; see e.g. Holodniok et a].’ 
Pao’ first investigated the flow between finite parallel plates enclosed by a cylinder of aspect ratio 
(defined as cylinder height divided by plate radius) unity. Dijkstra and van Heijst3 obtain results 
both experimentally and numerically for this flow with a smaller aspect ratio. In their configur- 
ation the cylinder rotates with the bottom plate, giving a singularity where the top plate meets the 
cylinder. 

The finite geometries discussed in this paper model the flow in two types of rheogoniometer 
which are used to measure and gain insight into the rheological properties of fluids. A frequently 
used approximation in the literature is that the inertial effects are neglected, i.e. fluid is assumed to 
flow in a simple primary pattern. However, secondary flow in the cone-plate geometry was 
observed as early as 1962 by  COX.^ Since that time there have been many publications on 
numerical and experimental techniques to calculate the effects of the secondary flow (see e.g. the 
review in Waiters'). However, most of these neglect the effects of the free surface at the liquid/air 
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interface. The apparatus is either assumed to be in a sea of liquid or the free surface is assumed to 
remain in its unperturbed state. Two exceptions to this are the free surface calculations of Joseph6 
and of Harriott and Brown7 for Newtonian fluids in the parallel plate geometry. 

Free surface problems with surface tension are known to1 be a difficult numerical problem. 
Tanner et al.* among others have computed the flow of a free viscous jet where surface tension 
effects have been taken into account. They report that the solution convergence is more limited by 
surface tension than by Reynolds number and as a result it is more difficult to establish the effect 
of high surface tension on jet shape. They were primarily concerned with the die swell phenom- 
enon and the extensions to non-Newtonian fluids. The surface tension in their jet problem is not 
as important as in the case considered here, where the fluid is completely held in by surface 
tension effects. 

Ruschak and Scriven' have presented results for two-dimensional flow of a Newtonian liquid 
coating a rotating horizontal cylinder. They consider the perturbation from the rigid body 
solution which is obtained when gravity is zero, Orr and Scriven" develop this further by using 
the finite element method to solve the equations directly. Lociating the free surface is found to be 
difficult, particularly when surface tension is high, but they manage to develop a scheme using the 
normal stress condition to move the boundary and having the remaining free surface conditions 
satisfied by the finite element algorithm. 

Hyun" has investigated the flow of an incompressive fluid inside a cylinder driven by a 
spinning bottom. The character of the flow changed depending on whether free surface conditions 
or rigid wall conditions were imposed on the top surface, particularly when the aspect ratio 
(cylinder height/radius) was small. A horizontal approximation to the free surface position was 
used and no attempt to find the exact free surface position was made. Keunings" has investigated 
some transient free surface problems for non-Newtonian fluids. 

In the next two sections we deal with a Newtonian fluid for our two configurations outlined 
above. In Section 2 we set up the parallel plate model and simplify the Navier-Stokes equations 
by considering an expansion of the pressure and velocity variables in terms of the angular velocity 
Q. The resulting system is solved using the finite element method in a rectangular region using 
three of the four boundary conditions on the free surface. The free surface is then calculated using 
the remaining boundary condition together with the requirement that the volume of the trapped 
fluid is conserved. This perturbation approach to the problem1 is similar to that used by Joseph6 
and by Harriott and Brown.7 In Section 3 we solve a similar set of equations for the cone and 
plate model in a triangular region. Finally in Section 4 we set up some non-Newtonian fluid 
equations equivalent to those in the first two sections and outline our investigations in this area. 

For the non-Newtonian flow the choice of a triangular finite element has a critical effect on 
obtaining physically meaningful solutions. In particular with quadratic velocities, changing the 
pressure-approximating field from continuous piecewise linear (the 'Taylor-Hood" element) to 
one whereby continuous piecewise linear and piecewise constant pressure fields are superimposed 
enables us to model this type of flow. 

2. NEWTONIAN FLUID BETWEEN PARALLEL PLATES 

2.1. The free surface problem 

Our aim is to model the particular fluid measuring device illustrated in Figure 1. The device 
consists of two parallel circular plates of radius a and distance h apart, with h very much smaller 
than a. A pipe is connected to the centre of the bottom plate to allow fluid into the device or 
equivalently to vary the pressure at this point. A Newtonian incompressible liquid of viscosity ,u 
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Figure 1. The physical problem 

and density p is held between the plates by surface tension at the free surface. The shape of the free 
surface is altered by rotating the two plates at different angular velocities about their centres. We 
consider various choices of the parameters K (IKlG 1) and L (ILI < l), where KR is the angular 
velocity of the top plate and LR is the angular velocity of the bottom plate. 

The governing system of non-linear partial differential equations in the interior of the region 
defined by Figure 2 is given by the Navier-Stokes equations and the continuity equation, both in 
cylindrical polar co-ordinates. We ignore gravitational effects, which are small since the distance 
h is small. We also assume that the fluid is in a steady state with axial symmetry. The boundary 
conditions are no slip on the top and bottom plate with symmetry conditions on the centreline. 
On the free surface we require (see Tidd et ~ 1 . ’ ~  or Jeseph6 for further details) no normal velocity 
and there are three stress boundary conditions, which may be written as 

Pro + Po, tan t,b = 0, 

(1 - tan2$) P,, + (P,, - Prr ) tan t,b = 0 
(1) 

( 2 )  
and 

[l +(drjd~)~]l’’) 3 

r P,, + P,, tan’ t,b + 2PrZ tan r,b = T ( 3 )  

where P,,, P,,, P,,, Pro and Po, are the components of the stress tensor in the appropriate 
directions and may be expressed in terms of the radial, tangential and axial velocities u, u, w and 
the pressure P.  

For the trivial case of R = 0, where there is no flow and the pressure is constant, the free surface 
boundary conditions reduce to an ordinary differential equation in the free surface positionf(z). If 

u = w = O ; v = K f i r  
z = h  

V” = 0 

1, = 0 
r = O  t,=O 

t,= T [k,+kd 
2 =o  
u = w = 0 ;  v = L i b  t, 

Figure 2. Boundary conditions for parallel plate geometry 
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we vary the pressure we obtain different profiles for the free surface. A value of P =  T/a gives us a 
free surface which is a cylinder. 

2.2. Mathematical formulation 

solution in powers of R is sought in which we put 
Following the perturbation techniques of Joseph6 and of Harriott and Brown7, a series 

f ( z )  = a + r22f(z) + Q4f,(z) + . . . , 
u=R2u2+r24u4+ . . . , 
u=Ru,+R3u3+ . . . , 

w=R2w2+R4w4+ . . . , 
P=Po+R2P2+R4P4+ . . . . 

The equations obtained by taking terms in no, R’ and R2 respectively can be written as (see Tidd 
et a l l 4 )  

(i) P =Po = T/a, (4) 

a 2 u l  + - - + - ‘ - L o  aZvl 1 a0 

dr2 aZ r dr r2 ’ 
(ii) ~ 

801 V l  - - - = 0  on Y=U. 
ar r 

The solution for u1 is easily seen to be given by 

u1 = r [ L + z (  K - L)/h]. 

au2 u2 aw2 
(iii) O=-+-+-, 

ar r dz 

(7) 

In addition there are no-slip boundary conditions on the upper and lower plate and symmetry 
conditions on the centreline. On the free surface r = a the boundary conditions are 

u2=o ,  aw,/ar=o, (12) 

2pau2 =T(%+2,&(z)) 1 on r = a ,  O<z<h. 
dz2 -P2+--  ar 

The numerical solution procedure described in the next subsection amounts to solving the 
above equations by the finite element method with all the boundary conditions except (13). The 
value of P2 is only determined up to a constant by these equations. This constant together with 
the free surface can then be calculated by using the condition (13) together with the requirement 
that volume is preserved. 
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2.3. Numerical formulation 

The use of finite element procedures for fluid flow problems is well documented elsewhere; see 
e.g. Taylor and Hughes15 or Teman.I6 We shall only discuss the points of particular relevance to 
our equations developed in Sections 2.1 and 2.2. 

Following classical Galerkin weighted residual methods, we may satisfy the derivative bound- 
ary conditions as natural conditions. We then split our domain into rectangles, each in turn 
subdivided into two triangles, and impose the essential velocity conditions. In this paper we 
compare results using two triangular finite elements. The first element (element L3) is a 
commonly used six-noded element with nodes at the vertices and midsides.16 The velocities are 
approximated locally over an element as continuous quadratic functions and the pressures as 
continuous linear functions. The second element (element LC) to our knowledge has not been 
used before and is a seven-noded element with an additional node to element L3 located at the 
centroid. The velocity approximation is identical to that of element L3. However, the pressure 
approximation is obtained by superimposing the continuous linear pressure approximation with 
a piecewise constant pressure field. The latter element was first suggested by Griffiths” in a paper 
discussing pressure approximations for incompressible flows. Gresho et al. l 8  have successfully 
used an equivalent superposition of pressure fields for Boussinesq fluids using quadrilateral 
elements. They report that there is some evidence that the lack of element mass balance can lead 
to non-physical solutions for some problems and our evidence seems to confirm this. The element 
LC gives us continuity over each element whereas element L3 only ensures continuity over the 
domain. This element has been analysed by Thatcher and Si lve~ter’~ and shown to satisfy the 
Babuska-Brezzi stability condition (see Girault and Raviart” for details of this condition). 
Moreover, they show that for the particular test problem presented it gives better answers than 
the similar but more complicated bubble element of Crouzeix and Raviart. 

A feature of our investigations to date are the fine grids that are needed in order to achieve 
reasonable accuracy, particularly near the free surface. The 16 x 8 grid (GRID1) is illustrated in 
Figure 3 and is graded by constructing lines parallel to the z-axis at distances T i ,  0 < i < 16, in the 
r-direction, where for fixed 2 < 1 

ro=O, r 1 6 = a ,  r i = ~ ( r i - l - r i - ~ ) + r i - l ;  1 <i<15. 

2.0 

Figure 3. 16 x 8 graded grid (GRID1) 
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GRIDl is obtained by taking A=O.85, but no attempt to optimize this parameter has been made. 
This grid is then uniformly refined to obtain a 32 x 16 grid (GRID2) by splitting each rectangle 
into four and triangulating using the same strategy as in GRID1. A 64 x 32 grid (GRID3) is 
similarly obtained from a uniform refinement of GRID2. The computer software used was based 
on the programs developed by Silvester.’l 

Having obtained solutions of velocities and pressures from the finite element approach, we then 
solve (13) to obtainf,. From the continuity equation (9) we may use values of -dw,/dz for the 
term containing du,/dr in (13). The values of dw,/dz may be. calculated either from the finite 
element approximation in each element or by fitting another interpolatory function to the values 
of wz. We present results using cubic splines to fit these values, which seemed to yield more 
satisfactory results than using the finite element approximation directly. We solved equation (13) 
by a finite difference technique, where the step length was determined by the finite element grid 
(i.e. h/2NZ on an NR x NZ grid). A solution was found that insured the volume of fluid had 
remained constant. This was achieved by altering the value of Pz which, as remarked above, is 
only determined up to a constant over the domain. 

To non-dimensionalise our model we make our length, velocity and stress variables dimension- 
less by the use of a, aR and T/a respectively. Thus we use a length ratio D = h/a, a Reynolds 
number Re = pRa2/p and a surface tension parameter S = Tpa/p2. The results we present in the 
next subsection all use values of D = 0.1, Re = 10.0 and S = 300.0. Thus the numerical procedures 
are carried out on the rectangular domain 0 d r 6 1 ,0  6 z d 0.1. In the results it is the dimension- 
less forms of the variables (and equations) that are referenced. 

2.4. Results 

K = 1, L = 1. The simplest case is when both plates are spinning at the same rate. In this case the 
solution of (8)-(11) can easily be calculated and is given by 

u1 = r, u2 = 0, wz =0, Pz = Rezrz/2S + constant. 

Our numerical procedures give us a solution that converges to this analytic solution as we refine 
the grid. The numerical solution produces larger values of uz compared with wz and these are 
greatest near the centreline. The critical effects of this will be seen in Section 4. For element L3 on 
GRIDl our numerical solution gives values of uz of at most 16 x lop5 and a value of Pz which 
deviates from the exact solution by 1 x lov3.  For GRID2 these values are about 3 x and 
2 x respectively. For element LC the results for uz annd wz are more accurate, giving 
approximately a factor of ten improvement on their respective largest values. The pressure 
deviation from the exact solution is, however, approximately the same as with element L3. The 
free surface, i.e.f,, from equation (13) is given by,f, =O and the actual value of Pz here is zero on 
the free surface, thus determining the constant above. 

K = 1, 06 L <  1. For this case the acceleration terms in the equations generate a radial flow 
which will be ‘out’ at the top and ‘in’ at the bottom. This will bulge the free surface and our aim is 
to calculate the profile of this bulge given byf,. The numerical values of w2 obtained on the free 
surface agree to two significant figures from one grid to the next. The values for element LC are 
more accurate than those obtained using element L3 with three figures of agreement from GRID2 
to GRID3. The values of w z  for 0 6 r 6 0 . 9  are ten times smaller than those on the free surface, and 
the solution shows more significant figures of agreement from one grid to the next at points away 
from the free surface. For the case of two infinite plates rotating the axial velocity is independent 
of radial position. Our values of w2 are in agreement with this away from the free surface for r 
approximately in the range O 6 r 6 0 . 8 .  The directions of u2 and wz and associated streamline 
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pattern are illustrated in Figures 4 and 5 respectively. The free surface positions,&, are given in 
Table I, where again the LC element results appear more accurate than the L3 element results. 

The same series expansion has been carried out by Kaye22 for the case of infinite plates with 
K = 1, L=O. It is shown that the pressure p' on the lower plate is given by 

p1=pb+R2Cr2 (14) 

where for this case C = 005 and the value of p b  is indeterminate. It is interesting to compare these 
pressure results with those that we have obtained, namely 

P(r, z )  = 1 + R2P2(r, z )  (15) 

and in particular to compare P2(r, 0) on GRID3 with Cr2. However, the effect of the free surface 
makes the value of P2(0, 0) -0.050014 on GRID3 for element L3. In Table I1 we compare the 
values of Cr2 with P2(r, 0)-P2(0, 0) along the lower plate. It is noted that these values compare 

Centre 
Line 
- 

Figure 4. Parallel plate flow pattern for K = 1, L=O with Re= 10. Note: size of arrows reflects speed of flow 

1 

, C e n t r e  
Line 

Figure 5. Parallel plate streamlines for K = 1 ,  L=O with Re= 10. Contour values: 1, -0.22E-4; 2, -0.18E-4; 3, -0.14E-4; 
4, -01E-4; 5, -0.7E-5; 6, -0.4E-5 
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Table I. Parallel plates. Values offi for Re= 10 with K = =  1, L=O (in units of 

Element L3 Element LC 
-~ 

2 GRIDl GRID2 GRID3 GRIDl GRID2 GRID3 

0‘0125 -0‘5943 -0’5990 -0.6002 -0.5982 -06001 -0.6004 
0.025 - 0.7964 - 0.801 9 - 0.8035 -0.80114 -0.8031 -0,8036 
0.0375 -0.5814 -0.5853 -0.5867 -05845 -0.5863 -0.5868 
0.05 -0.0752 - 0.0772 - 0.0778 - 0.07!5 - 0.0773 -0.0777 
0.0625 0.4904 0.4921 0.4926 0.4940 0.4929 0.4928 
0.075 0.8370 0.8414 0.8427 0.8436 0.8429 0,8431 

0.7069 0.7126 0.7142 0.71:!2 0.7144 07146 0.0875 

Table 11. Values of P2(r ,0)  -P,(O,O) on GRID3 and Cr2 on the 
lower disc for Re= lO with K = l ,  1;=0 

r 

0.0 
0.2997 
0.5 163 
0.6728 
0.7858 
0.8675 
0.9265 
0.969 1 
1 .o 

Parallel plates 
p2 (r,  0)  - P* (0,O) 

0.0 
OW4501 
0.0 1 3 342 
0.022649 
0.030891 
0.03 7652 
0.043068 
0.047 149 
0.048801 

KayeZ2 
Cr2 

0.0 
0.00449 1 
0013328 
0.022633 
0.030874 
0.037628 
0.042920 
0.046958 
0.050000 

0.0 
0.0043 57 
0.01 3 125 
0.022354 
0.030527 
0.037230 
0.0426 1 1 
0.0467 5 6 
0.048473 

well, particularly away from the free surface. Thus the use of the infinite plate to calculate 
pressures on the lower plate gives errors of the order CPP,(O, 0). 

The recirculation that can be seen in Figures 4 and 5 moves slightly nearer the lower plate if the 
lower plate is spun with L in the range 0 < L <  1, disappearing when L= 1. The free surface shapes 
for K = 1 with L=O and L=O.5 are illustrated in Figure 6. 

K = 1, - 1 < L<O. In the situation of the top plate rotating in the opposite direction to the 
lower plate at an equal rate ( K  = 1, L =  - l), two recirculations are set up. The solution is, as 
expected, symmetric to numerical accuracy; the streamline!; for this case are illustrated in 
Figure 7. The free surface is also symmetric and shows a ‘bulgt: out’ near each plate and a ‘bulge 
inwards’ in the centre. 

The second recirculation is not resolved by our grids for K = 1, - 0 5  < L < O  but evidence of 
it can be seen on the finer grids at a few points for L =  -0.5. The streamlines for the case K = 1, 
L= -0.75, showing the second recirculation, are illustrated in Figure 8. The dividing streamline 
d=O starts on the centreline and ends on the free surface, forming a stagnation point near 
r =a  where the effect of the slower rotating disc is largest. The free surface shapes for K = 1 
with L= -0.5, L =  -0.75 and L= - 1 are illustrated in Figure 9. 
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035  0.7 f ,  
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Figure 6. Parallel plate free surface shapes for Re= 10: x , K = 1, L=O +, K = 1, L=0.5 

Centre 
Llne f. 

Figure 7. Parallel plate streamlines for K = l ,  L= -1 with Re=10. Contour values: 1, -0.54E-5; 2, -0.41E-5; 
3, -0.278-53 4, -0'14E-5; 5, 0.0; 6, 0.14E-5; 7, 0.278-5; 8, 0.41E-5; 9, 0'54E-5 

2.5. Other related published results 

The shape and position of the free surface has been calculated for low Reynolds number by 
Joseph6 and by Harriott and Brown.' Joseph has done an asymptotic analysis for the limit of 
small aspect ratio and the results presented above are in qualitative agreement with these. In 
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Figure 8. Parallel plate streamlines for K = l ,  L= -0.75 with Re=10. Contour values: 1, -0.128-4; 2 ,  -0.99E-5; 
3, -0748-5; 4, -0.498-5; 5, -0.258-5; 6, 0.0; 7, 0,258-6; 8, 0'58-6 

1- 1 035 07 f, 

IO+ units 

Figure 9. Parallel plate free surface shapes for Re= 1 0  +, K = 1, L= -0.5; 0, K = 1, L = -0.75; x ,  K = 1, L= - 1 
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particular the free surface position given in Table I agrees with the results of Joseph to one 
significant figure. Harriott and Brown have found a solution in the form of a series of Bessel 
functions by using a stream function approach to equations (9H11). The aspect ratios used in 
their paper are considerably larger (in the range 0.2 <D < 5) than the one used above (D = 0 I), so 
no comparison is appropriate. 

The results for - 1 < K < O  differ significantly from those obtained by Dijkstra and van Heijst3 
who consider the flow between finite rotating plates enclosed by a cylinder (which is rotating with 
the lower plate). It is not surprising that these results differ from ours because of the rotating wall, 
although for K 2 0  the results are quantitatively similar. Dijkstra and van Heijst have resolved a 
second recirculation even for a counter-rotation factor of - 0.3. However, their numerical and 
experimental procedures fail for a counter-rotation factor of K < -0.825 owing to the strong 
velocity singularity where the top rotating plate meets the rotating cylinder. In contrast the grids 
used in this paper, with the plates bounded by a free surface, have not been able to resolve a 
second recirculation for -0-5 < K < 0. A second recirculation has been shown to develop near the 
free surface for I( = -0.75, with a fully symmetric solution reached at K = 1. However, these 
solutions are consistent with the results of Harriott and Brown.’ For small aspect ratio and low 
Reynolds number they predict that two recirculations will exist for rotation ratios in the range 
- 1 < K < - 2/3 and that the axial location of the dividing streamline is at  

Z =  -(2+3K)/10(1 -K) .  (16) 
Equation (16) is valid for radial positions away from the free surface and is in excellent agreement 
with the position of the dividing streamline in Figure 8. 

Further comparisons of the above results with those in the literature can be found in Tidd.23 

3. NEWTONIAN FLUID BETWEEN CONE AND PLATE 

We now consider the case of the top plate being replaced by a rotating cone. We use the same 
values of the non-dimensional numbers defined in the previous section and hence the angle that 
the cone makes with the bottom plate is small. We thus expect similar results to those already 
given for the parallel plate model. 

The equations of Section 2.1 follow through immediately, apart from the boundary conditions 
which are now applied on a cone-shaped region. The main difference is that it is now necessary to 
solve for u1 numerically. For the solution of the cone and plate flow we first solve (5) with 
boundary conditions to obtain an approximation to u1 at the grid points. For this we again use 
the finite element method and approximate u1 as continuous quadratic functions over an element. 
We then use the calculated values of u1 to evaluate the term containing u1 in (10) using a three- 
point Gaussian quadrature rule over each element. Full solutions are then obtained as before 
using the same two types of element. GRID4 with 32 elements along the bottom plate and 16 
elements on the free surface is illustrated in Figure 10. The grading in the radial direction of grid 
GRID4 is identical to that for grid GRID1 and the parameter A was again chosen to be 0.85. 
Further grids doubling the number of elements in each direction were used, as before, to 
demonstrate convergence (viz. GRID5 and GRID6 respectively). 

3.1. Results 

The values of v1 obtained on the three grids used proved to be fairly accurate, typically showing 
four significant figures of agreement from one grid to the next. The results corresponding to those 
of Table I are given in Table I11 for the cone and plate configuration with K = 1 and L = 0. Again 
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2 =o 

Figure 10. GRID4 

Table 111. Cone and plate. Values off2 for Re= 10 with 1Y= 1, L=O (in units of 

Element L3 Element LC 
~~ 

Z GRID1 GRID2 GRID3 GRID1 GRID2 GRID3 

0.0125 - 0.6043 - 0.6041 - 0.6043 -06034 
0.025 -0.7965 -0.7970 -0.7975 - 0.7956 
0.0375 -0.5664 -0.5679 -0.5685 -0'5659 
0.05 -0.0545 -0.0563 -0.0569 - 0.0546 
0.0625 0.5018 0.5005 0.5003 0.5010 
0.075 0.8269 0.8266 08269 0.8257 
0.0875 0.6843 0.6858 0.6863 0.6842 

~~ ~~ ~~~~ 

- 0.6041 - 0,6042 
- 0.7970 - 0.7974 
- 0.5678 - 0'5683 
- 0.0563 - 0.0567 

0.5005 0.5004 
0.8267 0.8270 
0.6858 0.6864 

.@= 0 

Figure 1 1 .  Cone and plate streamlines for Newtonian fluid with K =  1, L=O and Re=10. Contour values: -0.4E-5, 
-0.7E-5, -0.1E-4, -0.14E-4, -0.18E-4 

element LC appears to give more accurate values of w2 and.f,. The streamlines for this case are 
illustrated in Figure 11. 

The case of an infinite cone and plate geometry has also been carried out by KayeZ2 for K = 1 
and L = 0. The pressure on the lower plate is again shown to satisfy (14) and so a similar analysis 
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to the parallel plate geometry is valid (see Section 2.4 and Table 11). The value P2(0, 0) on GRID6 
for element L3 is found to be -0.04979. 

Two recirculations are again set up when the cone is rotated in an opposite direction to the 
plate (K  = 1, L= - 1). The solution is not symmetric in this case and the recirculation near the 
cone surface is slightly stronger than the recirculation near the plate. For L approaching zero 
(with K = 1) the lower recirculation becomes much weaker as in the parallel plate geometry. 

4. NON-NEWTONIAN FLUID SOLUTIONS 

In this section we calculate the flow patterns and free surface shapes for a non-Newtonian fluid in 
the two geometries. There are many different models of non-Newtonian fluid flow, each 
determined by the choice of constitutive equation. For a Newtonian fluid there is only one 
constitutive equation, namely 

P + PI =PA"', (17) 
where in rectangular Cartesian co-ordinates we have: P = ( P i j )  is the stress tensor; I = ( S i j )  is. the 
identity function; A(') =(A{;)) ,  with A{;)  = avi/axj + dvj/axi; p is the viscosity and p is the pressure. 

The choice of non-Newtonian constitutive equation adopted here is a generalization of (17) 
given by 

P + PI= p1 A(') + p2A',' + p3(A(')),, (1 8) 
where 

and p, , p 2 ,  p, are constants. 
The constitutive equation (18) is of the Rivlin-Ericksen type and generally used in problems 

where the velocities are small. For our purposes we assume the velocities are small in order to 
obtain a perturbation solution to the equations of motion in a manner similar to those in Sections 
2 and 3. An approximate relation between p 2  and p, exists given by (see Bird et ~ 1 . ~ ~ )  

2p2 + p 3  =O. (19) 
In cylindrical polar co-ordinates the equations of motion for no body forces acting on a non- 
Newtonian fluid in the steady state reduce to 

9 (20) 
P 

(22) 
---= l a p  u-+w----- aw aw p 2 K 3  p 3 s 3  -(- p aZ ar aZ p P 

where (Sl, S, ,  S,)=div((A(1))2) and (Kl ,  K , ,  K,)=div(A(,)). 
We require to solve the equations (20)-(22) together with the continuity equation in both the 

geomztries outlined in Sections 2 and 3. We again look for a series solution of these equations in 
powers of the angular velocity R. Now we note that ( K , ,  K,, K,)  and (Sl, S2, S , )  are quadratic in 
velocity and therefore if we only keep the first powers in R we obtain the same solution as for a 
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Newtonian fluid, i.e. equation (13) and its solution v1  are independent of the non-Newtonian 
effects. 

4.1. Terms in R2 

Since ( K l ,  K,, K , )  and (Sl, S,, S,) are quadratic in velocity, we need only calculate the 
from components of A"' and A(2) for the case of u = w =0, u = u1 which are given by Tidd et 

which we obtain 

Hence keeping terms of Q2 equations (20)-(22) become 

and the continuity equation, as before, becomes 

-+++--=o. au2 aw2 
ar r aZ 

From (23) we may also see that the free surface conditiclns (1)-(3) for terms up to R2 are 
unchanged from the Newtonian case. Hence non-Newtonian effects do not come into the free 
surface conditions using the perturbation analysis detailed here. 

We non-dimensionalize the non-Newtonian model in an identical fashion to the Newtonian 
model using a length ratio D = h/a, a Reynolds number Re = plRa2/pl, a surface tension parameter 
S=Tpa/p:  and a non-Newtonian parameter N=p3R2a/T. The results use values of D = O - l ,  
Re = 10.0, S = 3000 and N = p3/27.0 for various choices of p,. Increasing p 3  corresponds to the 
non-Newtonian effects becoming more important. We now outline our results for the two 
geometries. 

4.2. Parallel plates 

equation (24) becomes 
For this case we have an exact solution for u1 given by (8). Using this, the right-hand side of 

- r [ L  + z( K - L)/h] '' + (p, r / p )  [ ( K  - L)/h] '. (27) 
We observe that the term in p, of (27) is independent of z.  Indleed this term (apart from a constant) 
is just that obtained by considering a Newtonian fluid between two parallel plates spinning at the 
same rate (i.e. K =  1, L =  1 in Section 2). In this case we have rigid body motion with u=w=O.  
Since the equations (24H26) are linear, we conclude that the flow pattern for the non-Newtonian 
fluid is the same as that already calculated for Newtonian fluids for all values of K and L. The 
free surface is also unchanged but the pressure will be diflerent. These conclusions were also 
reached by Joseph.6 
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However, there are some difficulties in solving (24)-(26) numerically. The solution for a 
Newtonian fluid for the case K = L does not produce values of u2 and w2 which are identically 
zero and, as we have seen, oscillate throughout the whole region. Thus even for a value of p 3  = 1 
with K # L the solution shows oscillations near r = O  where the velocities are small, and for large 
p 3 ,  when the second term in (27) dominates, an oscillatory solution is obtained in the whole 
region. 

4.3. Cone and plate 

As noted in Section 3, no exact solution for u1 can be easily found, so the right-hand-side terms 
of equation (24) have to be evaluated from the numerical solution of (5). We again evaluate the 
element contributions using a three-point Gaussian quadrature routine and input these into our 
finite element solver. 

For element L3 erroneous results are found, particularly near the apex of the cone. The 
velocities have a non-physical checkerboard pattern on all the grids used. These results are a 
consequence of the lack of element mass balance and the fact that there is a pressure singularity at 
r = 0. The pressure distribution on the lower plate is proportional to log r for the case of an infinite 
cone and plate geometry.22 However, for the locally mass-conserving element, element LC, this 
checkerboard pattern is not present and the solutions are seen to converge from one grid to the 
next. 

The easiest way to see the non-Newtonian effect is to solve equations (24)-(26) keeping only the 
terms in p 3  on the right-hand side of (24), i.e. solve (24)-(26) for an inertia-less non-Newtonian 
fluid between the cone and plate. Since the equations are linear, we may then add this solution to 
that already obtained for a Newtonian fluid in Section 3. 

For values of K = 1 and L = O  the non-Newtonian effect is to give two recirculations. The 
largest dominating recirculation is near the free surface and the fluid flows in the same direction 
as for a Newtonian fluid. The weaker recirculation has flow in the opposite direction and is 
located near the centreline. The flow pattern for this case is illustrated in Figure 12. On adding the 
two solutions together, the two recirculations remain with the dominating one made stronger and 
the weaker one reduced. Large velocity gradients are present near the free surface and the 
associated free surface displacement is over twice as large as that of the corresponding Newtonian 
fluid. Increasing the value of pj has the effect of increasing the dominance of the non-Newtonian 
terms. A point is reached where the Newtonian terms can be ignored. The streamlines for the case 

a = O  

Figure 12. Cone and plate streamlines for an inertia-less non-Newtonian fluid with K =  1 ,  L=O and p3= 1 .  Contour 
values: 03E-5, 0.25E-5, 0.2E-5, 0.0, -0.49E-5, -0.74E-5, -0.99E-5, -0.12E-4 
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0’0 

Figure 13. Cone and plate streamlines for nowNewtonian fluid with K =  1 ,  L=O, Re=lO and p 3 = l .  Contour values: 
0.1E-6, 0.6E-7, 0.0, -05E-5, -0’17E-4, -0.29E-4 

p3 = 1.0 are illustrated in Figure 13 and should be compared with the single recirculation 
obtained for a Newtonian fluid in Figure 11. 

Changing the value of L with K =  1 does not alter the general flow pattern of an inertia-less 
non-Newtonian fluid, which still shows two recirculations. However, different flow patterns will 
be obtained on adding the non-Newtonian effect to the respective Newtonian solutions of 
Section 3 provided p3 is sufficiently small. 

4. CONCLUSIONS 

In this paper we have calculated flow patterns and free surface shapes for Newtonian and non- 
Newtonian fluids confined between both parallel plates and a cone and plate configuration at low 
Reynolds number. The importance of this work is in applications to rheology, where devices of 
the form described here with a stationary plate and a rotating cone or plate (i.e. K = 1, L=O) are 
used to measure viscosity and normal stress differences. 

In all the calculations that we have done it has been assumed that the free surface can be 
considered as a perturbation from the vertical circular cylinder. The full Navier-Stokes equations 
have been solved by Tidd et u1.z3,z5 with the free surface calculated using a trial free boundary 
approach and iterating on the normal stress condition (3). On comparing the results with those 
presented here, it is concluded that the perturbation technique is accurate up to Reynolds 
numbers of 100 with a surface tension parameter of S=300. The relation between Reynolds 
number and surface tension is important since it determines when the trial free boundary method 
diverges. The stability analysis for rigidly rotating captive drops by Ungar and Brownz6 and by 
Brown and Scriven” is important in this respect. 

For a non-Newtonian fluid an assumption of a slowly moving fluid was made for the 
constitutive equation and the results are calculated by a linearized approach similar to that of the 
Navier-Stokes equations. These results will only be valid for small perturbations of the free 
surface from the vertical circular cylinder. The secondary flow patterns in the cone-plate 
geometry are consistent with the known results for a cone rotating in a sea of fluid.5 The nature 
and sense of rotation are seen to depend dramatically on the elastic properties of the fluid, This 
perturbation technique has also been used in the situation of a cone-plate bounded by a 
cylinder.23 In this case a further secondary flow reversal is predicted, which is an affect observed 
by Hoppmann and Baronet.28 
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All the results have been calculated using triangular finite elements with quadratic velocities 
and linear pressures. It was found that continuous linear pressures produced non-physical 
velocity solutions in certain circumstances. Using ideas suggested by Griffiths,’ a new locally 
mass-conserving element overcame these difficulties. The stability of the finite element calcu- 
lations for Stokes flow is equivalent to the satisfaction of the Babuska-Brezzi condition.20 It is 
well known that element L3 is stable and Thatcher and Silvester” have recently shown that 
element LC also satisfies the Babuska-Brezzi condition. 
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